
AN ONTOLOGY FOR CERAMICS CATALOGUING
AND RELATED REASONING TASKS

Domenico Cantone, Cristiano Longo, Marianna Nicolosi-Asmundo, Daniele Francesco Santamaria
Department of Mathematics and Computer Science University of Catania*

Si ringrazia il “Progetto Pon Ricerca e Competitività 2007-2012 – PRISMA”

Abstract

Ontoceramic
OntoCeramic is an ontology for classification and cataloguing of ceramics. Currently, classification of ceramics is
performed by using traditional methods like hard-copy archives and standard digital techniques like relational
database. OntoCeramic has been developed to solve the problem of efficiently classification and cataloguing of
ceramics and to overcome the exponential complexity of ontological languages (i.e., OWL 2 DL) without sacrifice to
much expressiveness. The ontology aims to cover different aspects of the classification and cataloguing problem.
First at all, it is needed to identify unambiguously the location of the finding. One can have many locations to
consider for a specific finding that can be organized in some particular hierarchy. The entire allowed relations path
together with the object-properties required is shown in Figure 1. The double-hoop entities are optional, the others
are mandatory. The figure indicates how locations must be defined for an object. Circles indicate OWL classes,
arrows object-properties; the complete hierarchy of these object-properties is shown in Figure 2 (using the OWL
Editor Protege). No other relations (or combinations) are allowed. Then, OntoCeramic has to handle all the
components belonging to a specific object; for example, a cap can be found broken in three parts, each one
requires a distinct description but they need to be associated together. Unlike the hard-copy version of ceramic
catalogue, which does not manage directly the components of the finding but includes them in a descriptive field of
the archive, every fragment in OntoCeramic is an entity. Each entity is associated to the object of provenance with
the object-property “hasFragment", and, in particular, to one of its sub-properties. These sub-properties are
intended to link each fragment to the correct provenance position of the object. The “hasFragment" property has as
domain the class “Object" and as range “Type_Of_Fragment", instead each sub-property has as range the type of
the fragment. “hasFragment" has an inverse property, “isFragmentOf", that has four sub-properties, one for each
sub-property of “hasFragment" and defines their respective inverse. Some of these sub-properties are related
exclusively to the “Lamp" object and in order to provide this constraint, in their domains is expressed only the
“Lamp" object. Thanks to this structure it is possible to describe precisely every part of an object. All the possible
components are described in a taxonomy having root in “Type_Of_Fragment" and shown in Figure 3, taken using
the Protege Plugin Ontograf. Notice that “Foot" and “Bottom" have to be intended as equivalent. Figure 4 shows
how properties about fragment managing are related each other. The class of an object is structured in a taxonomy
as shown in Figure 5. To assign a class to an object the object-property “hasClass" is provided, having “Object" as
domain and “Class" as range. Sample and sector of a finding are represented by the respective classes “Sample"
and “Sector". Shape of an object is represented by the "Shape" class; the instances of these classes are associated
to an object with, respectively, the "hasSample", "hasSector" and "hasShape" object-property. Every instance of
class "Shape" can be unequivocally identified with a triple of properties: "hasFirstShapeDescriptor",
"hasSecondShapeDescriptor", "hasThirdShapeDescriptor", which are sub-properties of "hasShapeDescriptor" data-
properties. For each data-properties can be specified a string value: these values will be the keys for the "Shape"
instances . OntoCeramic can specify for a finding its color using the Munsell Color System through the data-
property "hasColor". This property provides three sub-data-property relations ("hasChroma", "hasHue", "hasValue")
for Munsell chroma, hue and value, respectively. In addition one can provide a finding date and a general additional
description using, respectively, "hasSiteDate" and "hasGeneralDescription" data-properties. As I explained above, it
is possible to indicate every fragment of an object using the "Type_of_Fragment" taxonomy and the relative object-
property. For each fragment one can specify its measurements. In particular, two data-properties are defined to
indicate the thickness of the fragments. Such data-properties are sub-properties of "hasThickness", which is used
for a general fragment. The first one, "hasWallThickness", is used to indicate the wall thickness of wall and foot
fragment, the second, "hasBottomThickness", is used to indicate the bottom thickness of a foot fragment. It is
possible to indicate if a fragment can be physically associated with another fragment to compose an unique object.
In this case the "isFittedWith" object properties is provided. One can specify box and sheet of the hard-copy
archive of the object description, using a "nonNegativeInteger" value in "hasBox" and "hasSheet" data property for
the object indicating the number of the box and the number of the sheet of the object form, respectively. To face the
shape question in the archaeological findings cataloguing the "Shape" taxonomy is provided as shown in Figure 6.
Currently, OntoCeramic supports two type of "shape" and three type of "shape type", but one can add an arbitrary
number of these classes and assert equivalence or dis-equivalence among them. As described above, there is no
world-wide accord in using a specific nomenclature for the shape and type of an object. The taxonomy tries to
resolve the question providing a class for each type of shape and many classes for each shape in order to
distinguish their types; where required, an equivalence (or dis-equivalence) relation can be provided among the
shape classes (or their sub-classes) to identify (or distinguish) shapes which are identical with respect to the
classification system but which have been called with different names. For example, Figure 7 shows how
"Lamboglia 1A" and "Hayes 8" are represented and identified.

We briefly outline the work developed in [4], namely the definition of the OWL 2
ontology Ontoceramic for cataloguing ceramics, the analysis of the classification of
Ontoceramic with some of the most widespread OWL reasoners and of its expressivity
with respect to the principal existing OWL 2 profiles. Ontoceramic has been defined in
collaboration with archeological experts as a first step to overcome the problem of
efficiently mechanize the task of correctly cataloguing ceramics for the purpose of
making such knowledge easily retrievable by scientists and researchers in the field.
Currently, in fact, classification of ceramics is performed by using traditional methods
like hard-copy archives and standard digital techniques like relational data-bases. The
task of classification of Ontoceramic brought to light the limits of each of the reasoners
used for the purpose. For example, we found out that Hermit was able to reason about
all of the constructs occurring in the ontology but it did not fully support reasoning on
data-type operations. Pellet, on the other hand, was capable to completely reason with
Ontoceramic as long as the ontology was deprived of some of its constructs. For the
purpose of studying and addressing some of the weaknesses of the reasoners we
used, our first step was to analyze the expressiveness of Ontoceramic. Thus, we
defined a logical model of Ontoceramic. Since none of the existing OWL 2 profiles
coincides with our model, that is, each existing OWL 2 profile resulted to be much
expressive and to not support some of the constructs occurring in Ontoceramic, we
defined a new OWL 2 profile called OWL 2 SS. Our new profile contains all the
features of the logical model of Ontoceramic that include a wide subset of OWL 2
constructs [9]. To ascertain the computational complexity of the reasoning problems of
the OWL 2 SS profile and to define an efficient reasoning algorithm for it, we
expressed it in set theoretical terms as a fragment of the four level stratified syllogistic
called 4LQSR (Restricted Four Level Quantified Syllogistic), proved to be decidable in
[2]. Thus, we singled out a sub-fragment of 4LQSR, called SSOWL, capable to
express the profile OWL 2 SS, and adapted to SSOWL the decision procedure
described in [2]. It turns out that under certain conditions, for 4LQSR the satisfiability
problem for SSOWL is NP-complete.

SSOWL

OWL 2 -SS
Comparison

OWL 2-SS
ClassExpression := simpleClassExpression | supClassExpression | supClassExpression | equivalentClassExpression.

simpleClassExpression := ObjectIntersectionOf | DataIntersectionOf | ObjectUnionOf | DataUnionOf | ObjectComplementOf |
ObjectOneOf | DataOneOf | EquivalentClasses | DisjointClasses | ObjectPropertyDomain | ObjectPropertyRange |
DataPropertyDomain | DataPropertyRange.

supClassExpression := Class other than owl:Thing | ObjectAllValuesFrom | DataAllValuesFrom | ObjectMaxCardinality |
DataMaxCardinality.

subClassExpression:= Class other than owl:Thing | ObjectSomeValuesFrom | ObjectHasValue | ObjectHasSelf | DataHasValue |
ObjectMinCardinality | DataSomeValuesFrom | DataMinCardinality.

equivalentClassExpression := Class other than owl:Thing | simpleClassExpression.

subObjectPropertyExpression := ObjectPropertyExpression | propertyExpressionChain.

superObjectPropertyExpression := ObjectPropertyExpression.

ObjectIntersectionOf := simpleClassExpression | supClassExpression.

ObjectUnionOf := simpleClassExpression | supClassExpression.

DataUnionOf := simpleClassExpression | supClassExpression.

ObjectComplementOf := simpleClassExpression | supClassExpression.

DisjointClasses := simpleClassExpression | supClassExpression.

ObjectPropertyDomain := simpleClassExpression | supClassExpression.

DataPropertyDomain := simpleClassExpression | supClassExpression.

ObjectPropertyRange := simpleClassExpression | supClassExpression.

DataPropertyRange := simpleClassExpression | supClassExpression.References
1. Cycorp, Inc. Cyc. http://www.cyc.com/.
2. D. Cantone, M. Nicolosi-Asmundo. On the Satisfuability Problem for a 4-level
Quantified Syllogistic and Some Applications to Modal Logic. Fundam. Inform.,
124(4):427-448, 2013.
3. HP Lab. Apache jena. http://jena.apache.org/.
4. D. F. Santamaria. A semantic web ontology for ceramics cataloguing and set-
theoretical representation for owl 2 profiles. Tesi di laura magistrale, University of
Catania, Department of Mathematics and Computer Science, 2014.
5. R. Shearer, B. Motik, and I. Horrocks. Hermit: A highly-efficient OWL reasoner. In
Proceedings of the Fifth OWLED Workshop on OWL: Experiences and
Directions,collocated with the 7th International Semantic Web Conference (ISWC-
2008), Karlsruhe, Germany, October 26-27, 2008, 2008.
6. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. Web Sem., 5(2):51{53, 2007.
7. D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System description.
In Automated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings, pages 292{297, 2006.
8. World Wide Web Consortium (W3C). SWRL: A semantic web rule language.
http://www.w3.org/Submission/SWRL/.
9. World Wide Web Consortium (W3C). OWL 2 web ontology language structural
specification and functional-style syntax (second edition).
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/.

	Diapositiva numero 1

